Idiopathic Bilateral Femoral Head Avascular Necrosis and Bilateral Humeral Head Avascular Necrosis

İdiyopatik Bilateral Femur Başı Avasküler Nekrozu ve Bilateral Humerus Başı Avasküler Nekrozu

Correspondence: Deniz BULUTa, Banu DIĞEBb

aDepartment of Physical Medicine and Rehabilitation, Kütahya University of Health Science Evliya Çelebi Training and Research Hospital, Kütahya, Türkiye
bDepartment of Physical Medicine and Rehabilitation, Dokuz Eylül University Faculty of Medicine, İzmir, Türkiye

ABSTRACT Avascular necrosis (AVN), meaning the cellular death of bone, can occur for various reasons. A 34-year-old male patient admitted with pain in the left shoulder was identified with bilateral hip AVN and bilateral shoulder AVN on magnetic resonance imaging. The patient underwent 21 sessions of physical therapy and was started on a rehabilitation program as the prescribed medical treatment. Prior to treatment, the patient reported a pain Visual Analog Scale score of 8, which reduced to 2 after 3 weeks of treatment. We present this case to literature due to the rare coexistence of hip and shoulder AVN and the good response of the patient to conservative treatment.

Keywords: Idiopathic avascular necrosis; physical therapy; hip pain; shoulder pain

Keywords: İdiyopatik avasküler nekroz; fizik tedavi; kalça ağrısı; omuz ağrısı

Osteonecrosis means literally “bone death”, and is referred to also as avascular necrosis (AVN), ischemic necrosis of the bone, aseptic necrosis and subchondral AVN. The pathogenesis of osteonecrosis is complex, but regardless of the mechanism, bone death ultimately occurs as a result of the complete or partial disruption of the delivery of oxygen and/or nutrients to the bone and surrounding tissues.¹

The etiology of AVN has yet to be fully clarified, although etiological factors have been divided into 2 main groups, being traumatic and non-traumatic, the latter of which represents a fairly large subgroup.² Often, no cause can be found for osteonecrosis, and such cases are referred to as idiopathic osteonecrosis.³

In the treatment of femoral head AVN, which is a very difficult problem to resolve, the goal is to preserve the existing anatomical structure, for which the age, general condition, comorbidities and disease stage of the patient need to be considered, along with
other important parameters such as the size and location of the affected segment.\(^2\)

Although there was no clear etiology in the presented case, AVN was detected in more than one joint. One of the basic factors that should be kept in mind in cases of femoral head AVN is that the disease is frequently bilateral, being noted in around 50% of cases.\(^2\) In the presented case, a humeral AVN was detected in addition to bilateral hip AVN, and despite the multiple joint involvement, a reduction in pain was achieved without the need for surgical treatment.

CASE REPORT

A 34-year-old male patient with no known disease was admitted to our outpatient clinic due to pain in the left shoulder. The patient had been working in ceramics for 1.5 years, before which worked as a security guard. The complained of shoulder pain at rest and at night that increased with movement. There was no fever, no weight loss and no night sweats.

A physical examination revealed a shoulder joint range of flexion of 160/180 degrees, a range of abduction of 150/170 degrees on the left and no other range of motion limitation of the shoulder joint. Shoulder impingement tests were positive and there were no signs of arthritis. The neurological exam was normal, and no apparent pathology was detected on a shoulder X-ray. After a diagnosis of shoulder impingement syndrome of the left shoulder was made, The magnetic resonance imaging (MRI) of the patient’s shoulder revealed hypointense signal changes on T1-weighted images, and hypointense and hyperintense signal changes on T2-weighted images, compatible with AVN of the humeral head (Figure 1).

As a result, the patient was diagnosed with humeral head AVN with morning stiffness. There was no history or physical examination finding suggesting of active arthritis, no history of drug use and no history of trauma. There was no indication of excessive alcohol or steroid use, no transplantation history, no radiation exposure, no inflammatory bowel disease such as Crohn’s disease and no ulcerative colitis. Routine blood tests revealed normal blood lipids, uric acid, serum amylase and parathormone. The patient was consulted with hematology and rheumatology to investigate possible etiological causes, and rheumatoid factor, ANA, ENA panel, anticardiolipin, antiphospholipid, anti-beta-2 glycoprotein, lupus anticoagulant, homocysteine, peripheral smear, immunoglobulin values, computed tomography of the thorax and abdomen for malignancy screening, DXA were requested, the results of which were normal. The patient was consulted with orthopedics. No surgical intervention was considered. He was placed on medical treatment (nonsteroidal anti-inflammatory medication) and was given a home exercise program (light stretching and joint range of motion exercises). The load on the joint was reduced. About 1 month later, the patient was admitted to our outpatient clinic with a pain in the hip spreading to the bilateral thighs. A physical examination revealed no sign of active arthritis, while the FABERE and FADIR tests were positive. A neurological examina-

![FIGURE 1: T1 (right) and STIR sequence (left) images of the left shoulder coronal section T1-weighted series, hypo-, T2-weighted series and hypo-and hyperintense signal changes.](image-url)
tion revealed no pathology; there was no difference in
foot length; and no antalgic gait was detected. An
MRI of the hip was requested considering the asso-
ciation between AVN of the hip and shoulder, and re-
vealed changes in signal secondary to Stage-III
vascular osteonecrosis in the bilateral hip joint (Fig-
ure 2).

The patient was again consulted with orthope-
dics, but no surgery was considered. The patient un-
derwent 21 sessions of physical therapy and was
started on a rehabilitation program as the prescribed
medical treatment [Physical therapy and a rehabilita-
tion program: 15 minute hot package, 3-8 minute ul-
trasound (1 watt/cm²), 20 minute 70 Hz conventional
transcutaneous electrical nerve stimulation; medical
treatment: nonsteroidal anti-inflammatory drug].
Joint range of motion and light stretching exercises
were recommended. The load on the joint was re-
duced through the use of a cane. Prior to treatment,
the patient reported a pain Visual Analog Scale (VAS
0-10 cm) score of 8 for the left shoulder and hip,
which reduced to 2 after 3 weeks physical therapy
program and medical treatment.

The patient had pain in the right shoulder that
began during hospitalization and that gradually in-
creased. An MRI of the right shoulder was performed
revealing a lesion that appeared to be hypointense on
T1-weighted imaging, and hyperintense on T2-
weighted images, consistent with broad-based edema
with a surrounding sclerotic area (Figure 3). The pa-
tient underwent 9 sessions of the same physical ther-
apy and an exercise program, and medical treatment
for the right shoulder. The VAS value declined from
6 to 3. The patient’s written and verbal consent was
obtained for the presentation of his case in a case re-
port.

FIGURE 2: Bilateral hip coronal section T1 image (right), and bilateral hip axial section T2 image (left) showed changes in signal secondary to Stage-III avascular osteo-
necrosis.

FIGURE 3: Images of the T1 (right) and STIR sequence (left) in the right shoulder coronal section. A lesion was detected that appeared to be hypointense on T1-weighted
imaging, and hyperintense on T2-weighted images, consistent with broad-based edema with a surrounding sclerotic area (big arrow).
Multifocal osteonecrosis is defined as the presence of osteonecrosis at 3 or more osseous sites. It is an infrequent entity, accounting for fewer than 3% of cases involving osteonecrosis patients. Cases of femoral head AVN can be divided into 2 main groups based on the etiology (traumatic and non-traumatic). The non-traumatic group includes cases of systemic steroid use, excessive alcohol use, pregnancy, hyperlipidemia, Caisson’s disease, organ transplantation, radiation exposure, hematological diseases, gout, hyperparathyroidism, inflammatory bowel diseases and pancreatitis. All such causes were investigated in our patient, but no etiological cause could be identified.

Clinically, patients most often complain of increased pain under load that can spread to the lower back, groin and thigh. Some patients may complain of night pain due to the increase in intraosseous pressure as a result of venous stasis. In patients with involvement in both hips, the asymptomatic period for the second hip is 4.6-5.5 years. Our patient had an additional complaint of pain that increased with load, occurring also occasionally at night, and pain in both hips that began at the same time.

In the early diagnostic stages, an abnormal finding may not be detected on a direct graph. The most advantageous diagnostic approach in such cases are MRI and bone scintigraphy. In our patient, no obvious pathology was identified in the direct graph at the outset, but with the continuation of pain, the diagnosis was supported by MRI and clinical findings.

A physical therapy and rehabilitation program can provide relief and alleviate some symptoms, but will not necessarily prevent progression in the progressive hip AVN. Similarly, limiting the weight carried through the use of assistive devices such as crutches or canes can be useful in controlling the symptoms of pain, weakness and walking. Nonsteroidal anti-inflammatory drugs and acetaminophen can provide temporary pain relief in symptomatic patients. Loading was reduced through the use of auxiliary devices in the present case, and a significant reduction in pain was achieved through a physical therapy and rehabilitation program, and the use of non-steroidal anti-inflammatory drugs.

In a previous case report, idiopathic widespread femoral osteonecrosis was reported to be an uncommon cause of knee pain.

In a further study involving a case of idiopathic osteonecrosis of the knee in a 31-year-old female patient, it was stated that good clinical results could be achieved with conservative treatment in cases of early-stage spontaneous osteonecrosis. Similar to this case, no etiological factor was identified in the present study, and full recovery was achieved with conservative treatment.

In the present case, no etiological factor could be identified, while bilateral humerus involvement in addition to bilateral hip involvement were identified, similar to that reported in a study in which bilateral idiopathic hip osteonecrosis was found in a 50-year-old male patient.

In patients with asymptomatic AVN, there is a high prevalence of progression to symptomatic disease and the collapse of the femoral head. For patients with asymptomatic disease, education is essential to ensure the reduction of risk factors and the improvement of care. Patients diagnosed with early-stage AVN should be advised to avoid placing excessive pressure on their joints, to follow a healthy diet and to maintain an appropriate weight if they are to reduce the progression of osteonecrosis. We informed our patient about his disease, investigated the underlying etiological factors and continued the monitoring of progression.

In the present case, AVN was detected in more than one joint, and a good response was obtained to conservative treatment. Since no etiological factors could be detected, we identified it as idiopathic, although the patient’s occupation and mechanical factors may have played a facilitating role.

When AVN is detected in the hip or shoulder, it should be kept in mind that there may be AVN in the joint if pain is reported in other joints.
REFERENCES

6. Rizzo M, Urbanak JR. Osteonekroz. Tan K, Taşkaynak MA, çeviri ed-