ISSN: 1309 - 3843 E-ISSN: 1307 - 7384
FİZİKSEL TIP VE REHABİLİTASYON
BİLİMLERİ DERGİSİ
www.jpmrs.com
Kayıtlı İndexler


ORIJINAL ARAŞTIRMA

Karpal Tünel Sendromuyla İlişkili Amino Asitler ve Etkileri
Amino Acids and Effects Related to Carpal Tunnel Syndrome
Received Date : 07 Aug 2024
Accepted Date : 17 Dec 2024
Available Online : 29 Jan 2025
Doi: 10.31609/jpmrs.2024-105051 - Makale Dili: TR
Turkiye Klinikleri Fiziksel Tip Ve Rehabilitasyon Bilimleri Dergisi. 2025;28(2):136-41.
ÖZET
Amaç: Medyan sinirin el bileğinde karpal tünel içinde sıkışması sonucu meydana gelen karpal tünel sendromu (KTS), en sık görülen tuzak nöropatidir. Genellikle sebebi idiopatik olup; inflamatuar ve endokrin bozukluklarında sıklığı artar. Etiyolojisi tam olarak açıklanmamıştır. Amino asitler (AA), çeşitli biyolojik fonksiyonlara sahip olup yaşam aktivitelerinde önemli bir madde sınıfıdır; enerji metabolizmasında rol oynayan proteinlerin bileşimi ve nörotransmitterler, nükleik asitler ve koenzimler gibi azot içeren bileşiklerin öncüleridir. Literatür taramamızda KTS’de AA incelemesi yapan çalışmaya rastlamadık. Bu anlamda ilk olan bu çalışmada patofizyolojiyi aydınlatmak ve tedaviye yardımcı olabilmek için AA seviyelerini incelemeyi amaçladık. Gereç ve Yöntemler: Çalışmaya; elektromyografi sonucuna göre KTS tanısı konulan hastalar dâhil edildi. Hastalar kendi içinde idiopatik KTS ve sekonder KTS olarak ayrılıp ayrıca aynı yaş ve cinsiyete uygun kontrol grubu da alındı. Hastaların plazmalarından uygun kit ile plazma serbest AA seviyeleri incelendi. Bulgular: 44 AA’dan 26 tanesi anlamlı olarak analiz edildi. İdiopatik KTS’de sistatin, glisin, beta alanin, 1- Methyl-L-histidin, asparajin, prolin değerleri daha düşük gözlenirken; 2-aminoadipik asit, anserin, lösin, arginin, glisin, histidin, fenilalanin değerleri daha yüksekti. Sekonder KTS’li hastalar hem idiopatik hem de kontrol grubuyla anlamlı farklılıklar gösterdi. Sonuç: KTS’li hastalarda farklılık gösteren AA’lar patogenezden sorumlu olabilir. Ayrıca düşük olanların takviye edilmesi veya yüksek olanların altta yatan sebeplerinin ortadan kaldırılmasının hastalık gelişimini engelleyeceğini düşünmekteyiz.
ABSTRACT
Objective: Carpal tunnel syndrome, which occurs as a result of compression of the median nerve in the carpal tunnel in the wrist, is the most common entrapment neuropathy. The most common cause is idiopathic; its frequency is increased in inflammatory and endocrine disorders. Its etiology has not been fully explained. Amino acids have various biological functions and are an important class of substances in life activities; it is a composition of proteins involved in energy metabolism and precursors of nitrogen-containing compounds such as neurotransmitters, nucleic acids and coenzymes. In our literature review, we did not find any studies examining amino acids in carpal tunnel syndrome. In this first study, we aimed to examine amino acid levels to elucidate the pathophysiology and assist in treatment. Material and Methods: Patients diagnosed with carpal tunnel syndrome based on electromyography results were included. The patients were divided into idiopathic CTS and secondary CTS, and a control group of the same age and gender was also included. Levels of 44 amino acids from the patients’ plasma were examined with the appropriate kit. Results: 26 amino acids were significant. While cystatin, glycine, beta alanine, 1-Methyl-L-histidin, asparagine and proline values are lower in idiopathic carpal tunnel syndrome; aminoadipic acid 2, anserine, leucine, arginine, glycine, histidine, phenyl alanine values were higher. Patients with secondary carpal tunnel syndrome showed significant differences with both the idiopathic and control groups. Conclusion: These amino acids may be responsible for the pathogenesis in carpal tunnel syndrome.
REFERENCES
  1. Lo SL, Raskin K, Lester H, Lester B. Carpal tunnel syndrome: a historical perspective. Hand Clin. 2002;18(2):211-7, v. [Crossref]  [PubMed] 
  2. Perkins BA, Olaleye D, Bril V. Carpal tunnel syndrome in patients with diabetic polyneuropathy. Diabetes Care. 2002;25(3):565-9. [Crossref]  [PubMed] 
  3. Chell J, Stevens A, Davis TR. Work practices and histopathological changes in the tenosynovium and flexor retinaculum in carpal tunnel syndrome in women. J Bone Joint Surg Br. 1999;81(5):868-70. [Crossref]  [PubMed] 
  4. Werner RA, Andary M. Carpal tunnel syndrome: pathophysiology and clinical neurophysiology. Clin Neurophysiol. 2002;113(9):1373-81. [Crossref]  [PubMed] 
  5. Becker J, Nora DB, Gomes I, Stringari FF, Seitensus R, Panosso JS, et al. An evaluation of gender, obesity, age and diabetes mellitus as risk factors for carpal tunnel syndrome. Clin Neurophysiol. 2002;113(9):1429-34. [Crossref]  [PubMed] 
  6. Diao E, Shao F, Liebenberg E, Rempel D, Lotz JC. Carpal tunnel pressure alters median nerve function in a dose-dependent manner: a rabbit model for carpal tunnel syndrome. J Orthop Res. 2005;23(1):218-23. [Crossref]  [PubMed] 
  7. Mail Gürkan Z, Tantik Pak A, Şengül Y, Öztürk İ. Karpal tünel sendromunun şiddeti ile nötrofil/lenfosit ve platelet/lenfosit oranının arasındaki ilişki [The relationship between the severity of carpal tunnel syndrome and the ratio of neutrophil/lymphocyte and platelet/lymphocyte]. Dicle Medical Journal. 2022;49(1):213-9. [Crossref]  [Link] 
  8. Cata JP, Uhelski ML, Gorur A, Dougherty PM. Nociception and pain: new roles for exosomes. Neuroscientist. 2022;28(4):349-63. [Crossref]  [PubMed] 
  9. Ma C, Teng L, Lin G, Guo B, Zhuo R, Qian X, et al. L-leucine promotes axonal outgrowth and regeneration via mTOR activation. FASEB J. 2021;35(5):e21526. [Crossref]  [PubMed] 
  10. Izumoto S, Younger D, Hays AP, Martone RL, Smith RT, Herbert J. Familial amyloidotic polyneuropathy presenting with carpal tunnel syndrome and a new transthyretin mutation, asparagine 70. Neurology. 1992;42(11):2094-102. [Crossref]  [PubMed] 
  11. Alexander JJ, Zwingmann C, Jacob A, Quigg R. Alteration in kidney glucose and amino acids are implicated in renal pathology in MRL/lpr mice. Biochim Biophys Acta. 2007;1772(10):1143-9. [Crossref]  [PubMed] 
  12. Constantinou MA, Theocharis SE, Mikros E. Application of metabonomics on an experimental model of fibrosis and cirrhosis induced by thioacetamide in rats. Toxicol Appl Pharmacol. 2007;218(1):11-9. [Crossref]  [PubMed] 
  13. Churchward-Venne TA, Burd NA, Mitchell CJ, West DW, Philp A, Marcotte GR, et al. Supplementation of a suboptimal protein dose with leucine or essential amino acids: effects on myofibrillar protein synthesis at rest and following resistance exercise in men. J Physiol. 2012;590(11):2751-65. [Crossref]  [PubMed]  [PMC] 
  14. Blomstrand E, Andersson S, Hassmén P, Ekblom B, Newsholme EA. Effect of branched-chain amino acid and carbohydrate supplementation on the exercise-induced change in plasma and muscle concentration of amino acids in human subjects. Acta Physiol Scand. 1995;153(2):87-96. [Crossref]  [PubMed] 
  15. Azeem M, Qaisar R, Karim A, Ranade A, Elmoselhi A. Signature molecular changes in the skeletal muscle of hindlimb unloaded mice. Biochem Biophys Rep. 2021;25:100930. [Crossref]  [PubMed]  [PMC] 
  16. Damyanovich AZ, Avery L, Staples JR, Marshall KW. 1H NMR metabolic profiling of synovial fluid from patients with anterior cruciate ligament tears and hemarthrosis. Osteoarthritis Cartilage. 2023;31(8):1066-77. [Crossref]  [PubMed] 
  17. Panfili E, Gerli R, Grohmann U, Pallotta MT. Amino Acid Metabolism in Rheumatoid Arthritis: Friend or Foe? Biomolecules. 2020;10(9):1280. [Crossref]  [PubMed]  [PMC] 
  18. Jaggard MKJ, Boulangé CL, Akhbari P, Vaghela U, Bhattacharya R, Williams HRT, et al. A systematic review of the small molecule studies of osteoarthritis using nuclear magnetic resonance and mass spectroscopy. Osteoarthritis Cartilage. 2019;27(4):560-70. [Crossref]  [PubMed] 
  19. Mickiewicz B, Heard BJ, Chau JK, Chung M, Hart DA, Shrive NG, et al. Metabolic profiling of synovial fluid in a unilateral ovine model of anterior cruciate ligament reconstruction of the knee suggests biomarkers for early osteoarthritis. J Orthop Res. 2015;33(1):71-7. [Crossref]  [PubMed] 
  20. Tack C, Shorthouse F, Kass L. The physiological mechanisms of effect of vitamins and amino acids on tendon and muscle healing: a systematic review. Int J Sport Nutr Exerc Metab. 2018;28(3):294-311. [Crossref]  [PubMed] 
  21. Ademolu AB. Branched chain amino acids and gestational diabetes mellitus. J Clin Endocrinol Metab. 2022;107(11):e4322-e4323. [Crossref]  [PubMed] 
  22. Gar C, Rottenkolber M, Prehn C, Adamski J, Seissler J, Lechner A. Serum and plasma amino acids as markers of prediabetes, insulin resistance, and incident diabetes. Crit Rev Clin Lab Sci. 2018;55(1):21-32. [Crossref]  [PubMed] 
  23. Drábková P, Šanderová J, Kovařík J, kanďár R. An assay of selected serum amino acids in patients with type 2 diabetes mellitus. Adv Clin Exp Med. 2015;24(3):447-51. [Crossref]  [PubMed]