ISSN: 1309 - 3843 E-ISSN: 1307 - 7384
FİZİKSEL TIP VE REHABİLİTASYON
BİLİMLERİ DERGİSİ
www.jpmrs.com
Kayıtlı İndexler


ORIJINAL ARAŞTIRMA

Robot Yardımlı Yürüme Eğitimi Tedavisi Uygulanan Komplet ve İnkomplet Spinal Kord Yaralanmalı Hastaların Karşılaştırılması
Comparison of the Patients with Complete and Incomplete Spinal Cord Injury Administered Robotic-Assisted Gait Training Treatment
Received Date : 12 Jun 2019
Accepted Date : 03 Oct 2019
Available Online : 13 Nov 2019
Doi: 10.31609/jpmrs.2019-70083 - Makale Dili: EN
J PMR Sci. 2020;23(1):12-9
ÖZET
Amaç: Çalışmanın amacı, subakut dönemde uygulanan robot yardımlı yürüyüş eğitiminin, komplet ve inkomplet spinal kord yaralanmalı hastalarda etkinliğini karşılaştırmaktı. Gereç ve Yöntemler: Otuz dört hasta çalışmaya alındı. Birinci grup komplet, ikinci grup ise inkomplet spinal kord yaralanmalı hastalardan oluşmaktaydı. Her iki gruba da 10 seans robot yardımlı yürüme eğitimi ve konvansiyonel tedavi uygulandı. Fonksiyonel ambulasyonu değerlendirmek için Spinal Kord Yaralanması için Yürüyüş İndeksi (SKYYİ II) kullanıldı. Hastaların fonksiyonel düzeyini belirlemek için Fonksiyonel Bağımsızlık Ölçütü (FBÖ) kullanıldı. Yaşam kalitesi Kısa Form 36 (KF-36) ile değerlendirildi. Bulgular: Her iki grupta da SKYYİ II, FBÖ skorlarına göre anlamlı gelişim gözlendi (p<0.001). Her iki grup için başlangıç skoru ve tedavi sonrası skor KF-36’nın tüm alt birimlerinde anlamlı bir farklılık göstermedi (p>0.05). Sadece tedaviden sonra fiziksel aktivite skoru, Grup 1 ve 2’deki başlangıç seviyesine göre anlamlı bir artışa sahipken (p<0.05), tedaviden sonra puanların diğer skorlardaki başlangıç puanlarına göre anlamlı bir değişiklik göstermedi (p>0.05). Sonuç: Robot yardımlı yürüme eğitimi tedavisinin komplet ve inkomplet spinal kord yaralanmalı hastaların fonksiyonel durumları, yürüme ve günlük yaşam aktiviteleri üzerinde etkileri vardır. Ancak, subakut dönemdeki komplet ve inkomplet spinal kord yaralanmalı hastalar arasında aktivite açısından herhangi bir fark bulunamadı.
ABSTRACT
Objective: The aim of the study was to compare the efficiency of robotic-assisted gait training applied during the subacute period for the patients with complete and incomplete spinal cord injury. Material and Methods: Thirty-four patients were included in the study. The patients were divided into two groups. The first group consisted of the patients with complete spinal cord injury and the second group comprised patients with incomplete spinal cord injury. Both groups were provided 10 robotic treatment training sessions in addition to conventional treatment. Walking Index Spinal Cord Injury II (WISCI II) was used to evaluate functional ambulation. The functional status of the patients was evaluated using Functional Independence Measurement (FIM). The quality of life was evaluated using Short Form 36 (SF-36). Results: Significant improvement was observed in both groups according to WISCI II results and FIM scores (p<0.001). For both groups, the baseline scores and after-treatment scores did not exhibit a significant difference in all subscales of SF-36 (p>0.05). While only after-treatment physical activity scores demonstrated a significant increase compared to the baseline scores in Group 1 and 2 (p<0.05), the after-treatment scores did not show a significant change compared to the baseline scores in the other measurements of SF-36 subscales (p>0.05). Conclusion: Robotic-assisted gait training treatment has effects on functional status, gait and daily living activities for the patients with complete and incomplete spinal cord injury. However, we were unable to identify any difference in terms of activity between complete and incomplete spinal cord injury in the subacute period.
REFERENCES
  1. Saeidiborojeni HR, Moradinazar M, Saeidiborojeni S, et al. A survey on spinal cord injuries resulting from stabbings; a case series study of 12 years' experience. J Inj Violence Res. 2013;5:70-4. [Crossref]  [PubMed]  [PMC] 
  2. Gündüz B. ASIA Update-ASIA Impairment Scale: level determination, classification, and case examples. Turk J Phys Med Rehab. 2015;61:525-31. [Crossref] 
  3. Piepmeier JM, Jenkins NR. Late neurological changes following traumatic spinal cord injury. J Neurosurg. 1988;69:399-402. [Crossref]  [PubMed] 
  4. Louie DR, Eng JJ, Lam T. Gait speed using powered robotic exoskeletons after spinal cord injury: a systematic review and correlational study. J Neuroeng Rehabil. 2015;12:82. [Crossref]  [PubMed]  [PMC] 
  5. Edgerton VR, Tillakaratne NJ, Bigbee AJ, et al. Plasticity of the spinal neural circuitry after injury. Annu Rev Neurosci. 2004;27:145-67. [Crossref]  [PubMed] 
  6. Onifer SM, Smith GM, Fouad K. Plasticity after spinal cord injury: relevance to recovery and approaches to facilitate it. Neurotherapeutics. 2011;8:283-93. [Crossref]  [PubMed]  [PMC] 
  7. Lotze M, Braun C, Birbaumer N, et al. Motor learning elicited by voluntary drive. Brain. 2003;126:866-72. [Crossref]  [PubMed] 
  8. Schwartz I, Meiner Z. The influence of locomotor treatment using robotic body-weight-supported treadmill training on rehabilitation outcome of patients suffering from neurological disorders. Harefuah. 2013;152:166-71.
  9. Dobkin BH. Spinal and supraspinal plasticity after incomplete spinal cord injury: correlations between functional magnetic resonance imaging and engaged locomotor networks. Prog Brain Res. 2000;128:99-111. [Crossref] 
  10. Winchester P, McColl R, Querry R, et al. Changes in supraspinal activation patterns following robotic locomotor therapy in motor-incomplete spinal cord injury. Neurorehabil Neural Repair. 2005;19:313-24. [Crossref]  [PubMed] 
  11. Dietz V, Wirz M, Curt A, et al. Locomotor pattern in paraplegic patients: training effects and recovery of spinal cord function. Spinal Cord. 1998;36:380-90. [Crossref]  [PubMed] 
  12. İnal S, Akdoğan E. Alt ekstremite rehabilitasyon robotları. Turkiye Klinikleri J Physiother Rehabil-Special Topics. 2015;1:6-13.
  13. Kirshblum SC, Burns SP, Biering-Sorensen F, et al. International standards for neurological classification of spinal cord injury (revised 2011). J Spinal Cord Med. 2011;34:535-46. [Crossref]  [PubMed]  [PMC] 
  14. Ditunno JF Jr, Ditunno PL, Scivoletto G, et al. The walking index for spinal cord injury (WISCI/WISCI II): nature, metric properties, use and misuse. Spinal Cord. 2013;51:346-55. [Crossref]  [PubMed] 
  15. Lundgren-Nilsson A, Tennant A, Grimby G, et al. Cross-diagnostic validity in a generic instrument: an example from the Functional Independence Measure in Scandinavia. Health Qual Life Outcomes. 2006;4:55. [Crossref]  [PubMed]  [PMC] 
  16. Koçyiğit H, Aydemir Ö, Fişek G ve ark. Kısa Form-36 (KF-36)'nin Türkçe versiyonunun güvenirliliği ve geçerliliği. İlaç ve Tedavi Dergisi. 1999;12:102-6.
  17. Waters RL, Adkins R, Yakura J, et al. Donal munro lecture: functional and neurologic recovery following acute SCI. J Spinal Cord Med. 1998;21(3):195-9. [Crossref]  [PubMed] 
  18. Eng JJ, Teasell R, Miller WC, et al. Spinal cord injury rehabilitation evidence: methods of the SCIRE systematic review. Top Spinal Cord Inj Rehabil. 2007;13:1-10. [Crossref]  [PubMed]  [PMC] 
  19. Wirz M, Bastiaenen C, de Bie R, et al. Effectiveness of automated locomotor training in patients with acute incomplete spinal cord injury: a randomized controlled multicenter trial. BMC Neurol. 2011;11:60. [Crossref]  [PubMed]  [PMC] 
  20. Schwartz I, Sajina A, Neeb M, et al. Locomotor training using a robotic device in patients with subacute spinal cord injury. Spinal Cord. 2011;49:1062-7. [Crossref]  [PubMed] 
  21. Shin JC, Kim JY, Park HK, et al. Effect of robotic-assisted gait training in patients with incomplete spinal cord injury. Ann Rehabil Med. 2014;38:719-25. [Crossref]  [PubMed]  [PMC] 
  22. Morawietz C, Moffat F. Effects of locomotor training after incomplete spinal cord injury: a systematic review. Arch Phys Med Rehabil. 2013;94:2297-308. [Crossref]  [PubMed] 
  23. Manella KJ, Torres J, Field-Fote EC. Restoration of walking function in an individual with chronic complete (AIS A) spinal cord injury. J Rehabil Med. 2010;42:795-8. [Crossref]  [PubMed] 
  24. Esquenazi A, Talaty M, Packel A, et al. The ReWalk powered exoskeleton to restore ambulatory function to individuals with thoracic-level motor-complete spinal cord injury. Am J Phys Med Rehabil. 2012:91:911-21. [Crossref]  [PubMed] 
  25. Fineberg DB, Asselin P, Harel NY, et al. Vertical ground reaction force-based analysis of powered exoskeleton-assisted walking in persons with motor-complete paraplegia. J Spinal Cord Med. 2013;36:313-21. [Crossref]  [PubMed]  [PMC]