ORIJINAL ARAŞTIRMA
Sanal Modeli Gerçek Dünyada Kullanmak Ne Kadar Güvenilir? ChatGPT Aracılığıyla İnme Sorularına Yanıt
How Reliable Is It to Use the Virtual Model in the Real World? Response to Stroke Questions Via ChatGPT
Received Date : 14 Feb 2025
Accepted Date : 07 May 2025
Available Online : 15 May 2025
Fatma ÖZCANa, Merve ÖRÜCÜ ATARa, Yasin DEMİRa, Eda GÜRÇAYa
aUniversity of Health Sciences Faculty of Medicine, Ankara Gaziler Physical Medicine and Rehabilitation Training and Research Hospital, Department of Physical Medicine and Rehabilitation, Ankara, Türkiye
Doi: 10.31609/jpmrs.2025-109562 - Makale Dili: EN
Turkiye Klinikleri Journal of Physical Medicine and Rehabilitation Sciences. 2025;28(3):278-84.
ÖZET
Amaç: Günümüzde, yapay zekâ sohbet robotları hastalar tarafından
hastalıkları hakkında bilgi edinmek için giderek daha fazla kullanılmaktadır.
İnme ile ilgili sorularda Chat “Generative Pre-trained Transformer’ın
(ChatGPT)” güvenilirliğini ve kullanılabilirliğini belirlemek amaçlanmıştır.
Gereç ve Yöntemler: Google Trends’te en sık aranan anahtar kelimeler
olarak belirlenen 3 anahtar kelimeye (“genel bilgiler”, “komplikasyonlar”
ve “rehabilitasyon”) göre hazırlanan toplam 39 soru, 2 değerlendirici tarafından
7 puanlık Likert ölçeğine göre güvenilirlik ve kullanılabilirlik açısından
eş zamanlı olarak değerlendirilmiştir. Bulgular: Değerlendiriciler
arası Cronbach α puanları, hem güvenilirlik hem de kullanılabilirlik puanları
için “mükemmel” ile önemli ölçüde uyum olduğunu göstermiştir (sırasıyla
α 0,813-0,949 arasında ve α 0,303-0,857 arasında). En yüksek ortalama
güvenilirlik puanı “genel bilgiler” içindi (ortalama 5,2). En düşük ortalama
ise “rehabilitasyon” bölümü içindi (ortalama 4,1). Değerlendirici 1 için
“komplikasyonlar” ve değerlendirici 2 için “genel bilgiler” kullanılabilirlik
için en yüksek ortalama puanlara sahipti (ortalama 5,4) ve en düşük ortalama
değer “rehabilitasyon” bölümünde kaydedildi (sırasıyla ortalama 4,6, 4,2).
Sonuç: ChatGPT’nin inme ile ilgili sorulara verdiği yanıtlar güvenilir ve
yararlıydı. Ancak, ChatGPT’nin özellikle “rehabilitasyon” bölümünde yanlış
veya eksik bilgi sağlayabileceği ve bunun da hastalık yönetiminde önemli
eksikliklere yol açabileceği unutulmamalıdır.
Anahtar Kelimeler: ChatGPT; inme; güvenilirlik; kullanılabilirlik; yapay zekâ
ABSTRACT
Objective: Nowadays, artificial intelligence chatbots are increasingly
used by patients to obtain information about the diagnosis, of
their diseases. This study aimed to determine the reliability and usability of
Chat Generative Pre-trained Transformer (ChatGPT) in stroke-related questions.
Material and Methods: A total of 39 questions were prepared according
to 3 keywords (“general information”, “complications” and
“rehabilitation”), which were identified as the most frequently searched keywords
in Google Trends, and were evaluated simultaneously by 2 raters according
on a 7-point Likert scale for reliability and usability. Results:
Inter-rater Cronbach α scores indicated almost perfect to substantial agreement
for both reliability and usability scores (α between 0.813-0.949, and α
between 0.303-0.857, respectively). The highest mean reliability score was
for “general information” (mean 5.2). The lowest average was for the “rehabilitation”
section (mean 4.1). The “complications” for rater 1 and “general
information” for rater 2 had the highest mean scores for the usability
(mean 5.4), and the lowest mean value was recorded in the “rehabilitation”
section (mean 4.6, 4.2, respectively). Conclusion: ChatGPT’s responses to
the stroke-related questions were reliable and useful. However, it should be
kept in mind that ChatGPT may provide incorrect and incomplete information,
especially in the “rehabilitation” section, which may lead to significant
deficiencies in disease management.
Keywords: ChatGPT; stroke; reliability; usability; artificial intelligence
REFERENCES
- Turakhia MP, Desai SA, Harrington RA. The outlook of digital health for cardiovascular medicine: challenges but also extraordinary opportunities. JAMA Cardiol. 2016;1:743-4. [Crossref] [PubMed]
- Gunawan J. Exploring the future of nursing: Insights from the ChatGPT model. Belitung Nurs J. 2023;9:1-5. [PubMed] [PMC]
- McCarthy J, Minsky ML, Rochester N, et al. A proposal for the Dartmouth summer research project on artificial intelligence. AI Magazine. 2006;27:12-4. [Link]
- Mintz Y, Brodie R. Introduction to artificial intelligence in medicine. Minim Invasive Ther Allied Technol. 2019;28:73-81. [PubMed]
- OpenAI [Internet]. Introducing CHATGPT. OpenAI © 2015-2025 [Cited: February 26, 2023]. Available from: [Link]
- Khan RA, Jawaid M, Khan AR, et al. ChatGPT-reshaping medical education and clinical management. Pak J Med Sci. 2023;39:605-7. [PubMed] [PMC]
- Feigin VL, Brainin M, Norrving B, et al. World Stroke Organization (WSO): Global Stroke Fact Sheet 2022. Int J Stroke. 2022;17:18-29. Erratum in: Int J Stroke. 2022;17:478. [Crossref] [PubMed]
- Castex A, Comte M. AVC, rééducation en soins de suite et de réadaptation [Stroke, follow-up and rehabilitation care]. Soins Gerontol. 2019;24:23-6. French. [PubMed]
- Liddy C, Blazkho V, Mill K. Challenges of self-management when living with multiple chronic conditions: systematic review of the qualitative literature. Can Fam Physician. 2014;60:1123-33. [PubMed] [PMC]
- Arcury TA, Sandberg JC, Melius KP, et al. Older adult internet use and ehealth literacy. J Appl Gerontol. 2020;39:141-50. [PubMed] [PMC]
- Uz C, Umay E. "Dr ChatGPT": Is it a reliable and useful source for common rheumatic diseases? Int J Rheum Dis. 2023;26:1343-9. [Crossref] [PubMed]
- Yeo YH, Samaan JS, Ng WH, et al. Assessing the performance of ChatGPT in answering questions regarding cirrhosis and hepatocellular carcinoma. Clin Mol Hepatol. 2023;29:721-32. [PubMed] [PMC]
- Landis JR, Koch GG. The measurement of observer agreement for categorical data. Biometrics. 1977;33:159-74. [PubMed]
- Hoh BL, Ko NU, Amin-Hanjani Set al. 2023 guideline for the management of patients with aneurysmal subarachnoid hemorrhage: a guideline from the American Heart Association/American Stroke Association. Stroke. 2023;54:e314-e370. Erratum in: Stroke. 2023;54:e516. [PubMed]
- Powers WJ, Rabinstein AA, Ackerson T, et al. Guidelines for the early management of patients with acute ischemic stroke: 2019 update to the 2018 guidelines for the early management of acute ischemic stroke: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2019;50:e344-e418. Erratum in: Stroke. 2019;50:e440-e441. [PubMed]
- Greenberg SM, Ziai WC, Cordonnier C, et al; American Heart Association/American Stroke Association. 2022 Guideline for the management of patients with spontaneous intracerebral hemorrhage: a guideline from the American Heart Association/American Stroke Association. Stroke. 2022;53:e282-e361. [Crossref] [PubMed]
- Garg D, Agarwal A, Srivastava MP, et al. Use of social media in stroke: a systematic review. Ann Indian Acad Neurol. 2023;26:206-12. [PubMed] [PMC]